Extraction of Δg from spin asymmetries in pp scattering

Werner Vogelsang
RBRC & BNL Nuclear Theory

RHIC/AGS Users' Meeting 2005

Outline:

- Introduction
- Next-to-leading order predictions for spin asymmetries at RHIC
- Technique for "global analysis"
- Conclusions

I. Introduction

→ Much current activity of the field

Measurement of Δg a major emphasis at RHIC

Hard scattering in hadron collisions

$$p_T^3 \frac{d\sigma}{dp_T d\eta} = \begin{pmatrix} p_T & \text{if } p_T$$

$$p_T^3 \frac{d\sigma^{pp \to FX}}{dp_T d\eta} = \sum_{abc} \int dx_a \, dx_b \, f_a(x_a, \mu) \, f_b(x_b, \mu)$$

$$\times p_T^3 \frac{d\hat{\sigma}^{ab \to FX'}}{dp_T d\eta} (x_a P_a, x_b P_b, P^F, \mu) + \text{P.C.}$$

$$\hat{\sigma}^{(0)} + \alpha_s \hat{\sigma}^{(1)} + \dots \quad \text{perturb.}$$

(for pions, additional fragmentation functions)

Needs: precision \rightarrow higher orders in QCD perturbation th. The last step is not trivial .

II. NLO predictions for RHIC

RHIC offers good possibilities to probe Δg :

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$ [61, 62]	$ec{g}ec{g} o gg \ ec{q}ec{g} o qg$	Δg	garage de la company de la com
$\vec{p}\vec{p} \rightarrow \text{jet(s)} + X$ [71, 72]	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
$\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$	$\begin{array}{l} \vec{q}\vec{g} \rightarrow \gamma q \\ \vec{q}\vec{g} \rightarrow \gamma q \end{array}$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	محرر
$\vec{p}\vec{p} \to \gamma\gamma + X$ [67, 73, 74, 75, 76]	$ar{q}ar{q} o \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$ [77]	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	مسو
$\vec{p}\vec{p} \to \mu^{+}\mu^{-}X$ (Drell-Yan) [78, 79, 80]	$\vec{q}\vec{\bar{q}} \to \gamma^* \to \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	>~<
$\vec{p}\vec{p} \rightarrow (Z^0, W^{\pm})X$ $p\vec{p} \rightarrow (Z^0, W^{\pm})X$ [78]	$\vec{q}\vec{q} \to Z^0, \; \vec{q}'\vec{q} \to W^{\pm}$ $\vec{q}'\bar{q} \to W^{\pm}, \; q'\vec{q} \to W^{\pm}$	$\Delta q, \Delta \bar{q}$	>

Jäger, Schäfer, Stratmann, WV

Jäger,Stratmann,WV; Signer et al.

Gordon, WV; Contogouris et al.; Gordon, Coriano

Stratmann, Bojak

Weber; Gehrmann; Kamal

NLO corrections known in all cases.

E*d³ɔ/dp³ (mb GeV⁻² c³) **PH**ENIX a) 10⁻¹ 10⁻² PHENIX Data KKP FF 10^{⁻⁴} ···· Kretzer FF 10⁻⁶ 10⁻⁷ 10⁻⁸ √0/0 (%) 40 20 b) 0 -20 -40 c) (Data-QCD)/QCD 2 0 d) 2 0 10 p_T (GeV/c)

$pp \to \pi^0 X$ at RHIC

Contributions by subprocesses

(from Guzey, Strikman, WV)

(S. Kretzer)

ullet A long-standing problem : $pp o \pi^0 \, X$

...well described by NLO at RHIC

...but data much higher than NLO at fixed-target energies!

• Detailed understanding of this issue is also important for spin physics at RHIC

• Resummation of important higher-order corrections beyond NLO de Florian, WV

$$p_T^3 \frac{d\hat{\sigma}_{ab}}{dp_T} = p_T^3 \frac{d\hat{\sigma}_{ab}^{\text{Born}}}{dp_T} \left[1 + \underbrace{\mathcal{A}_1 \, \alpha_s \, \ln^2 \left(1 - \hat{x}_T^2 \right) + \mathcal{B}_1 \, \alpha_s \, \ln \left(1 - \hat{x}_T^2 \right)}_{\text{NLO}} \right]$$

$$+ \ldots + \mathcal{A}_k \alpha_s^k \ln^{2k} \left(1 - \hat{x}_T^2\right) + \ldots$$
 $pp \rightarrow \pi^0 + X \quad E^* d^3 \sigma / dp^3 \quad (nb/GeV^2)$

$$\mathbf{\hat{x}_T} \equiv rac{\mathbf{2p_T}}{\sqrt{\hat{\mathbf{s}}}}$$

new terms lead to strong enhancement & improvement of theory vs. data →

Application to prompt photons:

$\mathbf{pp} \to \gamma \mathbf{X}$

"direct" contributions:

relatively small resum. effects

(Catani et al.; Sterman, WV; Kidonakis, Owens)

"fragmentation" contributions:

a bit like π^0 production, but less gg \rightarrow gg because $\mathbf{D}_{\mathbf{g}}^{\gamma}$ is smaller

de Florian, WV

de Florian, WV

Now to A_{LL} and Δg

- convolutions "pdf \times pdf \times cr.sec." relatively complicated. "inversion" $A_{LL} \rightarrow \Delta g(x)$ in general not straightforward
- at the moment emphasis is on NLO predictions of spin asymmetries in terms of "model" Δg , to study the sensitivity of the observable
- AAC (Hirai, Kumano, Saito) have made first attempts to estimate impact of future RHIC data
- future: CTEQ-style "global" analysis of variety of $A_{\rm LL}$ data. Should inlcude NLO.
- alternative approach: "correlations" (γ +jet, π + π) that probe kinematics in more detail

Rapidity dependence of A_{LL}

(L = 7/pb, P = 0.4)

• "correlations", e.g. in pp \rightarrow photon+jet+X

@ LO
$$x_1 = \frac{p_T}{\sqrt{s}} \left(e^{-\eta_1} + e^{-\eta_1} \right) \qquad x_2 = \frac{p_T}{\sqrt{s}} \left(e^{\eta_1} + e^{\eta_2} \right)$$

• recent study for pp $\rightarrow \pi\pi X$:

- * can "dial" x₂
- * NLO available in unpol. case (Owens;
 Binoth, Guillet, Pilon, Werlen)
- * pol. soon ... Jäger, Owens, Stratmann, WV
- * some of the advantage will be lost, but sensitivity is there
- * in any case, good tool for direct information, small-x

III. Technique for "global analysis"

Prospects of learning from data relies on our ability to efficiently evaluate

$$\sigma = \sum_{a,b} f_a \otimes f_b \otimes \hat{\sigma}_{ab}$$

- need "global analysis"
 - input pdfs at scale μ_0 in terms of ansatz with free parameters
 - evolve to scale μ relevant to a data point
 - compare to data and assign χ^2 value
 - vary parameters and minimize χ^2
- requires typically 1000's of evaluations of the cross section
- want $\hat{\sigma}_{ab}$ at order "as high as possible"
 - theoretical uncertainties decrease
 - but already NLO often numerically involved and time-consuming

Moments of a function f(x):

$$f^n \equiv \int_0^1 dx \ x^{n-1} f(x)$$

The Mellin inverse:

$$f(x) = \frac{1}{2\pi i} \int_{\mathcal{C}_n} dn \ x^{-n} f^n$$

A property: for a convolution,

$$(f \otimes g)(x) \equiv \int_x^1 \frac{dz}{z} f(z) g\left(\frac{x}{z}\right)$$

$$\left(f\otimes g\right)^n = f^n g^n$$

Well-known applications:

DGLAP evolution of pdfs. For example,

$$\frac{\mathrm{d} q(x,\mu)}{\mathrm{d} \log \mu^2} = P_{qq} \otimes q + P_{qg} \otimes g ,$$

therefore,

$$\frac{\mathrm{d} q^n(\mu)}{\mathrm{d} \log \mu^2} = P_{qq}^n q^n + P_{qg}^n g^n$$

DIS structure functions :

$$\int_0^1 dx \, x^{n-1} g_1(x, Q^2) \, = \, \frac{1}{2} \sum_q C_q^n \left(\Delta q^n(Q^2) + \Delta \bar{q}^n(Q^2) \right) + \dots$$

Makes Mellin moments ideal for analyses of DIS

 wide class of hadron-hadron cross sections: single-particle inclusive (or even less incl.) for instance, prompt photons at RHIC:

$$rac{d\sigma^{\gamma}}{dp_{T}d\eta} = \sum_{a,b} \int_{x_{a}^{\mathsf{min}}}^{1} dx_{a} \int_{x_{b}^{\mathsf{min}}}^{1} dx_{b} \ f_{a}(x_{a},\mu) \ f_{b}(x_{b},\mu) \ rac{d\hat{\sigma}_{ab}^{\gamma}}{dp_{T}d\eta} (\hat{s} \ , p_{T},\eta,\,\mu) \ x_{a}^{\mathsf{min}} = x_{T} \, \mathrm{e}^{\eta}/(2 - x_{T} \, \mathrm{e}^{-\eta}) \ x_{b}^{\mathsf{min}} = x_{a} \, x_{T} \, \mathrm{e}^{-\eta}/(2 \, x_{a} - x_{T} \, \mathrm{e}^{\eta}) \ (x_{T} = 2 p_{T}/\sqrt{S} \)$$

ullet only after integration over all η :

$$\frac{d\sigma^{\gamma}}{dp_{T}} = \sum_{a,b} \int_{x_{T}^{2}}^{1} dx_{a} \int_{x_{T}^{2}/x_{a}}^{1} dx_{b} f_{a}(x_{a},\mu) f_{b}(x_{b},\mu) \frac{d\widehat{\sigma}_{ab}^{\gamma}}{dp_{T}} (\widehat{x}_{T}^{2} = x_{T}^{2}/x_{a}x_{b},\mu/p_{T})$$

factorizes under Mellin moments,

$$\int_0^1 dx_T^2 \left(x_T^2\right)^{n-1} p_T^3 \frac{d\sigma^{\gamma}}{dp_T} = f_a^{n+1} f_b^{n+1} \left(\hat{\sigma}_{ab}^{\gamma}\right)^n$$
$$\left(\hat{\sigma}_{ab}^{\gamma}\right)^n \equiv \int_0^1 d\hat{x}_T^2 \left(\hat{x}_T^2\right)^{n-1} p_T^3 \frac{d\hat{\sigma}_{ab}^{\gamma}}{dp_T} (\hat{x}_T^2)$$

General Mellin technique

Stratmann, WV

earlier ideas: Berger, Graudenz, Hampel, Vogt; Kosower

Consider general cross sec. for producing final state H with observed variable O

$$\frac{d\sigma^H}{dO} = \sum_{a,b,c} \int_{\mathsf{exp-bin}} dT \int_{x_a^{\mathsf{min}}}^1 dx_a \int_{x_b^{\mathsf{min}}}^1 dx_b \int_{z_c^{\mathsf{min}}}^1 dz_c$$

LO + NLO + ...
$$\times f_a(x_a, \mu_F) f_b(x_b, \mu_F) D_c^H(z_c, \mu_F')$$
$$\times \frac{d\hat{\sigma}_{ab}^c}{dOdT} (x_a P_A, x_b P_B, P_H/z_c, T, \mu_R, \mu_F, \mu_F') ,$$

could be anything: $\vec{p}\vec{p} \rightarrow \gamma X$, $ep \rightarrow jet + X$, ...

Express pdfs by their Mellin inverses:

$$f_a(x_a, \mu_F) = \frac{1}{2\pi i} \int_{\mathcal{C}_n} dn \ x_a^{-n} f_a^n(\mu_F)$$

 $f_b(x_b, \mu_F) = \frac{1}{2\pi i} \int_{\mathcal{C}_m} dm \ x_b^{-m} f_b^m(\mu_F)$

$$\frac{d\sigma^{H}}{dO} = \frac{1}{(2\pi i)^{2}} \sum_{a,b,c} \int_{\mathcal{C}_{n}} dn \int_{\mathcal{C}_{m}} dm \ f_{a}^{n}(\mu_{F}) f_{b}^{m}(\mu_{F})$$

$$imes \int_{\mathsf{exp-bin}}^{1} dT \, \int_{x_c^{\mathsf{min}}}^{1} dx_a \int_{x_b^{\mathsf{min}}}^{1} dx_b \int_{z_c^{\mathsf{min}}}^{1} dz_c \, \, x_a^{-n} x_b^{-m} \, D_c^H(z_c, \mu_F')$$

$$\times \frac{d\widehat{\sigma}_{ab}^c}{dOdT}(x_a P_A, x_b P_B, P_H/z_c, T, \mu_R, \mu_F, \mu_F')$$

$$\equiv \sum_{a,b} \int_{\mathcal{C}_n} dn \, \int_{\mathcal{C}_m} dm \, f_a^{\,n}(\mu_F) \, f_b^{\,m}(\mu_F) \, ilde{\sigma}_{ab}^H(n,m,O,\mu_R,\mu_F)$$

Treated as known here. Method could be used to determine ff's: Kretzer, Yokoya

$$\sum_{a,b} \int_{\mathcal{C}_n} dn \; \int_{\mathcal{C}_m} dm \; f_a^{\,n}(\mu_F) \, f_b^{\,m}(\mu_F) \; ilde{\sigma}_{ab}^{\,H}(n,m,O,\mu_R,\mu_F)$$

- ullet $ilde{\sigma}_{ab}^H(n,m,O,\mu_R,\mu_F)$ is cross section for "dummy" pdfs $x_a^{-n} imes x_a^{-m}$
- ullet all tedious integrations in $ilde{\sigma}_{ab}^H(n,m,O,\mu_R,\mu_F)$
- ullet can be pre-calculated on a suitable grid in n,m
- for optimal contours, exponential decrease of x_a^{-n}, x_a^{-m} along contours
- pdfs fall off at least as fast as $1/|n|^4$, $1/|m|^4$

Only n,m integrations left!

Toy analysis: prompt photons at RHIC

- NLO, scales $\mu_F = \mu_R = p_T$
- $\sqrt{S} = 200$ GeV, $|\eta| < 0.35$, isolated cr. sec.
- "ficticious" data points at $p_T=12.5,17.5,22.5,27.5,32.5~{\rm GeV}$ calc. with GRSV \oplus random Gaussian 1σ shift
- fit to DIS and prompt photon "data" ansatz for gluon density:

$$\Delta g(x,\mu_0) = N x^{\alpha} (1-x)^{\beta} (1+\gamma x) g(x,\mu_0)$$

• perform large number of fits; allow for $\Delta \chi^2 = 4$ to obtain "error band"

Evaluation of cross section extremely fast:

- generation of grids in n, m takes \sim 5 hrs.
- after that : 1000 evaluations of cr. sec. in \sim 10 sec.

IV. Conclusions

- ullet have solid (and tested!) theoretical framework for calculations of A_{LL} at RHIC
- extraction of Δg will require simultaneous analysis of varied data sets
- still a lot of work remains to make "global analysis" work for polarized case

ullet lepton-nucleon : $\gamma p o c ar c X$

Watson; Glück, Reya, WV Bojak, Stratmann

HERMES, COMPASS

• can also use high- p_T hadrons

SMC, HERMES, COMPASS

Bravar, Kotzinian, v. Harrach

positive Δg : $A_{LL}^{\pi^+} > A_{LL}^{\pi^0}$ negative Δg : $A_{LL}^{\pi^+} < A_{LL}^{\pi^0}$

positive Δg : $A_{LL}^{\pi^-} < A_{LL}^{\pi^0}$ negative Δg : $A_{LL}^{\pi^-} > A_{LL}^{\pi^0}$

... only at $p_T > 5$ GeV, good statistics required